Declarations and Types in the PVS Specification Language

Ben L. Di Vito

NASA Langley Research Center Formal Methods Team

> b.divito@nasa.gov phone: (757) 864-4883

fax: (757) 864-4234

http://shemesh.larc.nasa.gov/people/bld

NASA Langley – NIA Short Course on PVS 27–30 November 2007

Declarations

Named entities are introduced in PVS by means of declarations

- User-defined language units such as constants, variables, types, and functions are introduced through a series of declarations
- Examples:

- Collections of related declarations are grouped together into PVS theories
- A set of predefined theories called the *prelude* is available as the user's starting point
- Named items used in a declaration must have already been declared previously
 - No forward references
 - Note the order in the example above
- A declared entity is visible throughout the rest of the theory in which it is declared
 - It may also be exported to other theories (variables excepted)
 - Variables can be introduced using local bindings, with much more limited scope

Kinds of Declarations

PVS specification language allows a variety of top-level declarations

- Type declarations
- Variable declarations
- Constant declarations
- Recursive definitions
- Macros
- Inductive/coinductive definitions
- Formula declarations
- Judgements
- Conversions
- Library declarations
- Auto-rewrite declarations

Declarations and Types Nov 2007 -2/23

Theories

Specifications are modularized in PVS by organizing them into theories

- Declarations within a theory may freely use earlier declarations within that same theory
- Declarations from other theories may be used when properly imported
 IMPORTING sqrt, real_sets[nonneg_real]
 - Default rule is that all declared entities (other than variables) are exportable
- Theories may be parameterized so that specialized instances can be created
 - Theory parameters include constants and types
 - Constitutes a powerful mechanism for creating generic theories that are readily reused
- Named items imported from different theories may clash, requiring name resolution
- General form:

Declarations and Types Nov 2007 - 3 / 23

Variables

Logical variables in PVS are used to express other declared entities

• Basic form of a variable declaration:

```
name_1,...,name_n: VAR <data type>
```

- Scope extends to end of theory
- Variables in PVS are *not* the same concept as programming language variables
 - PVS variables are logical or mathematical variables
 - They range over a (possibly infinite) set of values
 - No notion of program state is inherent in these variables
- Variables are not exportable outside of their containing theories
 - Each theory declares its own variables

Declarations and Types Nov 2007 - 4 / 23

Local Bindings

Local variables are also possible in PVS

Local bindings are embedded within declarations for larger containing units:

- The scope of such local variables is limited to the containing unit
- Local bindings can *shadow* previous bindings or declarations in the containing scope
- Local variables or bindings may be used in several PVS constructs:
 - Quantifiers
 - LAMBDA expressions
 - LET and WHERE expressions
 - Type expressions

Declarations and Types Nov 2007 - 5 / 23

Constants

Named constants may be introduced as needed for use in other declarations

• Basic forms of a constant declaration:

```
name: <type> = <value>
name: <type>
```

- A constant may be either:
 - Interpreted (having a definite value) or
 - Uninterpreted (value left unspecified)
- Practical consequences of this choice:
 - When the value is specified, it is available for use in proofs
 - If unspecified, anything proved using the constant will be true for any legitimate value it could have
- Declaring a constant requires that its type be nonempty
- Like variables, constants are not the same concept as programming language constants
- Function declarations are actually a special kind of constant declaration
 - A constant of a function type in the higher-order logic framework of PVS

Type Concepts

PVS provides a rich set of type capabilities

- A type is considered to be a (possibly infinite) set of values
- Types may be declared in one of several ways:
 - As uninterpreted types with no assumed characteristics
 - As instances of predefined or user-defined types
 - Through mechanisms for creating types for structured data objects
 - Through a mechanism for creating subtypes
 - Through a mechanism for creating abstract data types
- Higher-order logic plays a big role in the type system
 - Function types are used extensively to model common concepts such as arrays
- Interpreted types are declared using *type expressions*
- PVS uses structural equivalence not name equivalence

Declarations and Types Nov 2007 - 7 / 23

Predefined Types

PVS provides a set of basic predefined types for declaring constants and variables as well as for deriving subtypes

- Boolean values: bool
 - Includes the constants true and false
 - Accompanied by the usual boolean operations
- Integers: int and nat
 - int includes the full set of integers from negative to positive infinity
 - nat includes the nonnegative subset of int
 - Accompanied by the usual constants and operations
 - int and nat also have various subtypes declared in the prelude
 - Commonly used subranges:

```
below(8) is the subtype of nat having values 0, ..., 7 upto(8) is the subtype of nat having values 0, ..., 8 above(8) is the subtype of int having values 9, 10, ... upfrom(8) is the subtype of int having values 8, 9, ...
```

Declarations and Types Nov 2007 — 8 / 23

Predefined Types (Cont'd)

- Rational numbers: rational
 - Axiomatizes the true mathematical concept of rationals
 - Rational constants sometimes used to approximate real constants
- Real numbers: real
 - Axiomatizes the true mathematical concept of reals
 - Different from the programming notion of floating point numbers
 - Axioms for real number field taken from Royden
- All axioms and derived properties for the predefined types are extensively enumerated and documented in the prelude
 - The prelude itself is written in PVS notation
 - Prelude extensions are also possible

Declarations and Types Nov 2007 - 9 / 23

Uninterpreted Types

Types may be named and left unspecified

Basic form of an uninterpreted type declaration:

```
name: TYPE
```

- Identifies a named type without assuming anything about the values
- Only operation allowed on objects of this type is comparison for equality
- Alternate form of uninterpreted type:

```
name: NONEMPTY_TYPE or name: TYPE+
```

- Difference is the assumption of nonemptiness
- One uninterpreted type may be a subtype of another:

```
name_2: FROM NONEMPTY_TYPE name_1
```

- Some subset of name_1's values may be used in the new type

Declarations and Types Nov 2007 - 10 / 23

Predicate Subtypes

Often we need to derive types as subsets of other types

PVS allows predicate subtypes to be declared directly:

```
posint: TYPE = \{n: int \mid n > 0\}

index: TYPE = \{n: int \mid 1 \le n \text{ AND } n \le num\_units\}

CONTAINING 1

fraction: TYPE = \{x: real \mid -1 < x \text{ AND } x < 1\}

oddint: TYPE = \{n: int \mid odd?(n)\}
```

- All properties of the parent type are inherited by the subtype
- A constraining predicate is provided to identify which elements are contained in the subset
- A CONTAINING clause may be added to show nonemptiness
- Type correctness conditions (TCCs) may be generated to impose a nonemptiness requirement

Enumeration Types

The familiar concept of enumeration type is available in PVS

Basic declarations:

```
color: TYPE = {red, white, blue}
flight_mode: TYPE = {going_up, going_down}
```

- Value identifiers become constants of the type
 - The constants are considered distinct
 - Axioms are generated that state these inequalities
 - Example: red /= white
 - An inclusion axiom states that the explicit constants exhaust the type
- Constant identifiers may be used in expressions

Declarations and Types Nov 2007 - 12 / 23

Function Types

A key feature of PVS and its style of formalization is the function type capability

• Functions types are declared by explicitly identifying domain and range types:

```
status: TYPE = [LRU_id -> bool]
operator: TYPE = [int, int -> int]
operator: TYPE = FUNCTION[int, int -> int]
control bank: TYPE = ARRAY[LRU id -> control block]
```

- Reserved words FUNCTION and ARRAY provide alternate forms with equivalent meaning
- A value of a function type is a mathematical object: any legitimate function having the required signature
 - Values may be constructed using LAMBDA expressions
 - This feature is fully higher order: domain and range types may themselves be function types
- Function types make the language very expressive and allow some rather sophisticated mathematics to be formalized directly

Function Types (Cont'd)

Functions types are the primary means in PVS of modeling structured data objects such as vectors and arrays

• Consider an array type in a procedural programming language notation:

```
memory: ARRAY address OF word
```

• This would be represented in PVS with a function type:

```
memory: [address -> word]
```

- Array access in a programming language is typically denoted M[a]
 - In PVS we use function application: M(a)

Declarations and Types Nov 2007 - 14 / 23

More on Predicates and Types

Certain types involving predicates are treated as special cases

• A predicate type can be declared explicitly or using a shorthand:

```
nat_pred: TYPE = [nat -> bool]
nat_pred: TYPE = pred[nat]
nat_pred: TYPE = setof[nat]
```

• Certain predicate subtypes also have a shorthand:

```
prime?(n: nat): bool = ...
primes: TYPE = {n: nat | prime?(n)}
primes: TYPE = (prime?)
```

- Personal taste dictates which way to declare types
 - Explicit method for novices vs. shorthand for experts
 - Shorthand notations pop up a lot, however
 - Need to be able to recognize them

Tuple Types

Structured data objects in the form of tuples can be modeled using tuple types

• Declarations include types for each element:

```
pair: TYPE = [int, int]
position: TYPE = [real, real, real]
two_bits: TYPE = [bool, bool]
```

Instances are easily specified:

Tuple elements are organized positionally

$$(1, 2) \neq (2, 1)$$

• Elements are extracted using special notation or predefined projection functions

Declarations and Types

Record Types

Similarly structured data objects can be modeled using record types

• Declarations include types for each element:

• Instances are easily specified:

```
(# x := 1, y := 2, z := 3 #)
```

Record elements are organized by keyword

```
(# left := 1, right := 2 #) = (# right := 2, left := 1 #)
```

 Elements are extracted using special notation or function application based on the element names

Other Type Concepts

Two additional typing mechanisms are available in PVS

 Abstract data types are introduced by giving a scheme for defining constructors and access functions

```
list[base: TYPE]: DATATYPE
    BEGIN
    null: null?
    cons (car: base, cdr: list) : cons?
    END list
```

- This declaration causes axioms and derived functions to be generated based on the DATATYPE scheme
 - Example: induction axiom usable within the prover
- CODATATYPE is also available for coalgebraic formalization

Declarations and Types Nov 2007 — 18 / 23

Other Type Concepts (Cont'd)

• Dependent types offer another powerful typing concept:

- These declarations introduce a tuple and a record structure where the type of component day depends on the *values* of month and year that precede it in the structure
- Allows complex data type dependencies to be modeled, obviating the messy specifications that would be necessary without this feature
- Can also be used in other contexts such as function arguments

```
ratio(x, y: real, z: \{z: real \mid z \neq x\}): real = (x - y) / (x - z)
```

TCCs are generated as needed to ensure well-formed values

Lexical Rules

PVS has a conventional lexical structure

- Comments begin with '%' and go to the end of the line
- Identifiers are composed of letters, digits, '?', and '_'
 - They must begin with a letter
 - They are case sensitive
- Integers are composed of digits only
- Rationals can be written as ratios or with decimal notation
 - -2.718 is equivalent to 2718/1000
 - Leading zeros are required: 0.866
 - No floating point formats
- Strings are enclosed in double quotes
- Reserved words are not case sensitive
 - Examples: FORALL exists BEGIN end
- Many special symbols
 - Examples: [# #] -> (: :) >=

Examples of Declarations

major_mode_code: TYPE = nat
mission_time: TYPE = real

GPS_id: TYPE = $\{n: nat \mid 1 \le n \& n \le 3\}$

receiver_mode: TYPE = {init, test, nav, blank}
AIF_flag: TYPE = {auto, inhibit, force}

M50_axis: $TYPE = \{Xm, Ym, Zm\}$

IMPORTING vectors[M50_axis]

M50_vector: TYPE = vector[M50_axis]

position_vector: TYPE = M50_vector
velocity_vector: TYPE = M50_vector

GPS_positions: TYPE = [GPS_id -> position_vector]
GPS_velocities: TYPE = [GPS_id -> velocity_vector]

GPS_predicate: TYPE = [GPS_id -> bool]

GPS_times: TYPE = [GPS_id -> mission_time]

Sample Declarations (Cont'd)

Declarations and Types

Sample Declarations (Cont'd)

```
matrices [row_type, col_type: TYPE]: THEORY
BEGIN
             TYPE = [col_type -> real]
vector:
              TYPE = [row_type -> vector]
matrix:
vector_2: TYPE = [row_type -> real]
matrix_2:
             TYPE = [col_type -> vector_2]
            VAR row_type
i:
j:
             VAR col_type
a,b,c:
           VAR real
           VAR vector
U,V:
M,N: VAR matrix
 . . .
```

END matrices

Declarations and Types Nov 2007 — 23 / 23